Super Volume Reduction of ¹³⁷Cs-contaminated Solid Waste by Ion Chromatographic Elimination of Cs from ¹³⁷Cs-enriched Dust Generated by Pyroprocessing Decontamination

Tsuneki ICHIKAWA^{1, 2*}, Kazuo YAMADA², Masahiro OSAKO³, and Kazuko Haga⁴

¹Hokkaido University (Home address: 8-1-27 Tonden 3, Kita-ku, Sapporo, Hokkaido 002-0853, Japan) ²National Institute for Environmental Studies, Fukushima Branch

(10-2 Fukasaku, Miharu, Fukushima 963-7700, Japan)

³National Institute for Environmental Studies (16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan) ⁴Taiheiyo Consultant, Co. Ltd. (2-27-8 Nihonbashi , Chuo-ku, Tokyo 103-0004, Japan)

> Received January 19, 2018; accepted February 28, 2018 Recommended by chairmen in the 6th annual meeting of SRRCE

Summary

Using an ion chromatography with copper ferrocyanide-loaded silica gel as an adsorbent, Cs was selectively removed from the simulated rinsing solution of Cs-enriched dust generated by pyroprocessing of solid waste that had been contaminated with radioactive Cs due to the Fukushima Daiichi Nuclear Power Plant accident. The spent adsorbent was stably solidified by using metakaolin as a hydraulic solidifier. The weight of the final radioactive waste was estimated to be less than 1/1000 of the original one.

Key Words: ¹³⁷Cs decontamination, Super volume reduction, Pyroprocessing, Ion chromatography, Copper ferrocyanide, Geopolymer