Studies of Cs Docontamination Condition Using Vermiculite as Simulated Soil

Kohei YOSHIDA¹, Erni JOHAN¹, Naoto MATSUE², Yoshiteru ITAGAKI¹, and Hiromichi AONO^{1*}

 ¹Graduate School of Science and Engineering, Ehime University (3 Bunkyo-cho, Matsuyama, Ehime 790-8577 Japan)
²Faculty of Agriculture, Ehime University (3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan)

Received July 18, 2014; accepted August 8, 2014

Summary

A large amount of radioactive Cs in soil and water from the accident of Fukushima No.1 nuclear power plant is a serious problem. The fixation of Cs^+ by clays such as vermiculite in soil made difficult the decontamination of Cs. Suitable condition for the Cs decontamination in soil was studied using a vermiculite as a simulated soil. Cs^+ adsorption rates in distilled water and seawater for the vermiculite were 99.4% and 31.6%, respectively. Higher concentration of $(NH_4)_2C_2O_4$ and $(COOH)_2$ was effective for Cs^+ desorption from the vermiculite. Magnetic Na-P1 zeolite and magnetic mordenite were utilized as a Cs adsorbent materials after desorption of Cs^+ from the vermiculite. The magnetic mordenite showed higher Cs adsorption ability than that of the magnetic Na-P1 zeolite. Magnetic collection rate using a neodymium magnet in solution trended to decrease with increase of $(COOH)_2$ concentration due to decomposition of the magnetic zeolite.

Key Words: Cesium, Vermiculite, Na-P1 zeolite, Mordenite, Magnetite