Development of Gamma Camera to Visualize Distribution of Radioactivity

Isao TAKAHASHI^{1)*}, Yuichiro UENO¹⁾, Takafumi ISHITSU¹⁾, Takahiro TADOKORO²⁾, Koichi OKADA²⁾, Yasushi NAGUMO²⁾, Jun NUKAGA²⁾, Kenichi NAGASHIMA³⁾, Yasutake FUJISHIMA⁴⁾

¹⁾Hitachi, Ltd., Central Research Laboratory (7-2-1, Omika-cho, Hitachi, Ibaraki 319-1221 Japan),

²⁾Hitachi, Ltd., Hitachi Research Laboratory (7-2-1, Omika-cho, Hitachi, Ibaraki 319-1221 Japan),

³⁾Hitachi Consumer Electronics Co., Ltd .(292 Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa 244-0817 Japan),

⁴⁾Hitachi-GE Nuclear Energy, Ltd.(3-1-1, Saiwai-cho, Hitachi, Ibaraki 317-0073 Japan)

Summary

A gamma camera has been developed to support recovering from the contamination caused by the accident of Fukushima Dai-ichi Nuclear Power Plant. The gamma camera consists of a radiation detector, an optical camera, and a laser range finder, which enables recognition of the contamination situation by visualizing radioactivity. Laboratory tests confirmed the capability of discriminating nuclides (e.g. ¹³⁷Cs and ¹³⁴Cs) and the spatial resolution of 0.8 m (FWHM) at a distance of 10 m. Field tests under the actually assumed environment revealed that hot-spots can be visualized and the effect of decontamination works can be measured by using the gamma camera.

Key Words: Gamma Camera, Radiation Detector, Visualization, Decontamination