Preparation of Composite Materials of Na-P1 Type Zeolite and Magnetite for Cs Decontamination in Soil

Hiromichi AONO¹ Ayako YOKOTA¹ Yuki MIZOGUCHI¹ Kazumasa TAMURA¹ Yusuke WATANABE¹
Erni JOHAN² Rie YAMAUCHI² Naoto MATSUE² Toru YAMAMOTO², and Teruo HENMI²
¹Ehime University, Graduate School of Science and Engineering (790-8577 Matsuyama Bunkyo-cho 3)
²Ehime University, Faculty of Agriculture (790-8566 Matsuyama Tarumi 3-5-7)

Summary

The reaction time and the concentration of NaOH solution were studied for the preparation of Na-P1 type zeolite using fly-ach. Addition of NaAlO₂ is effective for the improvement of cation exchange capacity (CEC) value. A new composite material consisting of the Na-P1 type zeolite and magnetite was synthesized from the waste fly-ash of thermal power stations and iron chlorides for the decontamination of radioactive ¹³⁴Cs and ¹³⁷Cs. The magnetic collection was possible using this composite material after Cs⁺ ion adsorption. The existence of nanosized magnetites in the polycrystalline zeolite (several micrometers) was confirmed by TEM observations. Decontamination test of the radioactive Cs⁺ ion using the magnetic Na-P1 type zeolite and the soil was succeeded.

Key Words: Fly-ash, Na-P1 Type Zeolite, Magnetite, Magnetic Zeolite, Radioactive Cs Decontamination