Migration behavior of radioactive cesium in forests and mountains

Fukushima Environmental Safety Center Sector of Fukushima Research and Development Japan Atomic Energy Agency

Kazuki Iijima

LONG-TERM ASSESSMENT OF TRANSPORTOF RADIOACTIVE CONTAMINANT IN THE ENVRONMENT OF FUKUSHIMA

福島長期環境動態研究プロジェクト

2016 SRRCE International Symposium (2016/07/08@Fukushima)

Outline

- Behavior of radioactive Cs in forests
 - Characteristics of distribution and transportation of Cs in the environment
 - Short-term countermeasures
 - Long-term countermeasures
 - Issues to be considered

Topographical characteristics of the Fukushima

Topography of eastern and central part of the Fukushima prefecture.

Contamination by the FDNPS accident

Distribution map of air dose rate in the Fukushima prefecture. (measured from the 1st Sept. to the 7th Nov. 2014 by NRA and corrected to the 7th Nov. 2014)

Initial Cs distribution: Forests occupied the most

Land use distribution in eastern Fukushima

Kitamura et al., Anthropocene (2014).

Objective of the F-TRACE project

Develop phenomenological models to describe quantitatively transport of radioisotopes(especially radioactive Cs) along water systems

Research area

F - T R A C **Z** P R O J E C T

Monitoring of surface runoff and soil loss R O J E C

Water, litter and soil movement

Cs in **Stemflow**

 Concentration of Cs in non-filtered stemflow sample was similar to that of filtered.

10

Dissolved fraction of Cs was dominant in the stemflow.

Sampling date (month-day-year)

Stemflow and its Cs-137 activity. The Cs-137 activity is a volume-weighted average of triplicate at each experimental plot (KE&KW; Kawamata, KA; Kawauchi).

Niizato et al., J. Environ. Radioact. (2016).

Erosion rate of Cs-137 with soil in observation plots in forests from April to November (8 month).

	2013	2014	2015
<u>Kawauchi</u> Evergreen (Japanese cedar) Steep slope	0.10%	0.06%	0.30%*
<u>Kawamata (KE)</u> Deciduous Gentle slope	0.02%	0.10%	
<u>Kawamata (KW)</u> Deciduous Steep slope	0.05%	0.11%	0.23%

* The outlet to collect eroded soil of this plot was repaired on Nov. 2014.

Based on Niizato et al., J. Environ. Radioact. (2016).

Cs adsorbed onto soil

F - T R A C 12 P R O J E C T

2 After H_2O_2 treatment (removal of organics)

residue 3rd 1M HCI 2nd 1M HCI 1st 1M HCI 3rd 1M KCI 2nd 1M KCI 1st 1M KCI 3rd 0.01M NaCI

- 2nd 0.01M NaCl
- 1st 0.01M NaCl
- ✓ Soil samples after sorption experiments were sequentially desorbed by;
 - NaCl (simple washing),
 - KCI (ionic exchange),
 - HCI (inside the solids).

Cs was strongly adsorbed onto soil regardless of organic contents and hardly desorbed.

Evolution of dose rate after decontamination

©2014 DigitalGlobe

Measurement points for dose rate designated at boundary between decontaminated area (in the Decontamination Pilot Project) and not decontaminated forests in Kawauchi.

Evolution of dose rate after decontamination $\begin{bmatrix} - & T & R & A \\ R & O \end{bmatrix} \begin{bmatrix} - & T & R & A \\ C & T \end{bmatrix}$

Decontaminated forest (removal of litter and topsoil)

Evolution of dose rate after decontamination

✓ Dose rates at the surface were scattered (gray circles).

Leaves and soils from forests temporally sedimented.

However, they were maybe removed by next flowing water.

Air dose rates showed decrease depending on decay of Cs.

=> Discharge of Cs from forests was quite limited so that increase of air dose rate at forest edge was not significant.

Depth distribution of Cs

F - T R A C 16 P R O J E C T

Migration behavior of Cs

F - T R A C 17 P R O J E C T

Process of supply of Cs to the mineral layer has been changed.
Cs is being accumulated in 0 – 10 cm mineral layer.

http://www.jaea.go.jp/02/press2013/p13102901/index.html Nakanishi *et al., J. Environ. Radioact.* (2014).

Cs discharged to river system

Surface deposits inside small dams located between moutainside forest and mountain stream were collected.

Concentration of radioactive Cs in the deposits supplied from forests decreased with the elapse of time.

Concentration of Cs in the sediments of the Ogaki dam lake

Countermeasures to keep soil in forests

20

> Enough litter layer and vegetation are required.

Wild plants and mushrooms

TRAC21

Plants	Sampling	Plant Cs-137	Soil Cs-137	тс	
		(Bq/kg-DW)	(Bq/kg-DW)	IF	
oudo (spikenard)	2015/4	1.5×10 ²	8.6×10 ³	1.7×10 ⁻²	
western bracken fern	2015/4	1.6×10 ³	1.3×10 ⁵	1.2×10 ⁻²	
bamboo shoot	2015/5	9.2×10 ³	1.2×10 ⁴	7.9×10 ⁻¹	
ostrich fern	2015/5	1.8×10 ²	1.6×10 ⁴	1.1×10 ⁻²	
giant butterbur	2015/5	2.0×10 ²	5.8×10 ³	3.4×10 ⁻²	
giant butterbur	2015/5	8.8×10 ¹	5.8×10 ³	1.5×10 ⁻²	
Eleutherococcus sciadophylloides	2015/5	8.5×10 ³	1.8×10 ⁴	4.8×10 ⁻¹	
Eleutherococcus sciadophylloides	2015/5	1.1×10 ⁴	1.5×10 ⁴	7.0×10 ⁻¹	
chocolate vine	2015/9	4.0×10 ¹	1.4×10 ⁴	2.9×10 ⁻³	
Vaccinium oldhamii	2015/9	2.0×10 ²	1.1×10 ⁴	1.8×10 ⁻²	Floutharaaaau
Vaccinium oldhamii	2015/9	1.0×10 ²	3.8×10 ³	2.6×10 ⁻²	sciadophylloides
hana peach	2015/9	3.6×10 ¹	1.6×10 ⁴	2.2×10 ⁻³	
Japanese chestnut	2015/9	1.1×10 ⁴	2.1×10 ⁴	5.3×10 ⁻¹	
Japanese chestnut	2015/9	1.5×10 ³	7.2×10 ³	2.1×10 ⁻¹	
Japanese chestnut	2015/9	1.1×10 ³	7.0×10 ⁴	1.5×10 ⁻²	
Japanese chestnut	2015/9	4.0×10 ³	3.6×10 ⁴	1.1×10 ⁻¹	
Mushrooms	Sampling	Mushroom Cs-137 (Bq/kg-DW)	Soil Cs-137 (Bq/kg-DW)	TF	
Trametes versicolor	2015/4	7.0×10 ³	1.3×10 ⁴	0.56	
Hypholoma sublateritium	2015/10	1.2×10 ⁴	1.6×10 ⁴	0.80	5 3 4 5 6 7 8 9 301 2 3 4 5 6 7 8 9 01
Hypholoma sublateritium	2015/11	1.4×10 ⁴	7.1×10 ⁴	0.20	Hypholoma

na sublateritium

Trees

- => relationship to Cs in stemflow?
- Concentrations in sapwood and heartwood were lower than those of barks.

Particulate Cs on trees and lichens

F - T R A C 23 P R O J E C T

examples of lichens

examples of lichens

Mapping of elemental distribution around the particle with high concentration of Cs, which could be distinguished by autoradiography.

Cs Concentrated point was observed on barks by autoradiography.
=> particulate Cs related to dissolved Cs in stemflow?

Dissolved Cs in river water

Suspended solids (SS, left) and radiocesium (right) concentration in lower Ukedo and Takase river waters in the tyhpoon in 2013.

(Bq/L)	Ukedo	Takase
Dissolved ¹³⁷ Cs	0.31	0.05
	±0.03	±0.02
SS-bound ¹³⁷ Cs	2.2	2.1
	±0.2	±0.1
¹³⁴⁺¹³⁷ Cs	3.3	2.9

✓ SS: Ukedo << Takase</p>

✓ SS supplied upstream did not reach to lower Ukedo river due to the presence of the dam.

✓ Dissolved Cs: Ukedo > Takase
✓ Higher Cs accumulated along

mountain streams might affect.

Comparison of Ukedo and Takase rivers

Upper: Less contaminated

Concentration of Cs in the Ogaki dam lake water E CT

Less effect of dissolved Cs on rice

Lower than 1 Bq/L of dissolved Cs in irrigation water could give lower than 100 Bq/kg in rice.

http://www.maff.go.jp/j/kanbo/joho/saigai/pdf/youin_kome2.pdf (in Japanese)

Prediction of Cs discharge from the river

<u>GETFLOWS</u> (physical model for soil loss and water transportation): Water flow, soil loss and Cs-137 discharge for 3 days during each high water event.

It can be applied to predict the behavior of Cs depending on precipitation.

Prediction of Cs sedimentation/discharge in the dam²⁹

TODAM: 1D transport model for contaminant in rivers

Forests

Summary

- Large inventory: 0-10 cm mineral layer of soil adsorbed Cs, leading to less Cs in river system.
- **Short-term**: decontaminated near living-sphere, hopefully with something to prevent soil loss.
- Long-term: managed so as to keep enough litter layer and vegetation of forest floor.
- To be considered / monitored:
 - Cs in ecosystem (wild plants, mushrooms, trees) to estimate concentrations in future.
 - Dissolved Cs in water system if it would increase due to any changes of circumstances.

F - T R A C E P R O J E C T

http://fukushima.jaea.go.jp/english/decontamination/