Cs Migration Behaviour in the Environment and Its Long-Term Assessment after Decontamination Work in Fukushima

Mikazu Yui, Kazuki Iijima, Yukio Tachi, and Shinichi Nakayama

Fukushima Environmental Safety Center Japan Atomic Energy Agency

Special Decontamination Area(>20 mSv/y) : 11 Municipalities by National Government

Intensive Contamination Survey Area (1 to 20mSv/y) by Each Municipality Funded by Government :104 Municipalities, 8Prefecturs

Based on the Guidelines for Decontamination Works Issued by Ministry of the Environment

Special Decontamination Area and Intensive Contamination Survey Area

Off-site Decontamination Measures WWW Document,http://josen.env.go.jp/en/documents/pdf/documents_02.pdf

➤Decontamination for Forest

➤Decrease in Waste Generation

➤Waste Storage and Disposal

≻Possible Recontamination by Weather and Water Flow

Based on Understanding of Cs Behavior in the Environment: Likely Dominated by Sorption Especially on Clay Minerals in the Soil Zone

Cs Transport Behavior

Cs Sorption Significantly Affected by

- ➤Ionic Strength of Aqueous Solutions
- ≻Kinds of Solid phases

≻Organic Matter

More Important is

➤Reversibility of Cs Sorption on Natural Materials

Cs is Rarely Detected from Water, It Means That

- ≻Cs Sorption Likely Irreversible
- ➤Cs Transport Accompanied by Solid Particles, Especially in Fresh Waters

Cs sorption on Montmorillonite

Clay-based Modeling Approaches

7

	Sorption model	Diffusion model
Bentonite	Montmorillonite	Homogeneous + EDL
Mudstone / Horonobe	Smectite + Illite	Pore distribution +EDL
Granite / Grimsel	Biotite+Chlorite+ • •	EDL? + Heterogeneous ?
Soil	Clay minerals •••	Unsaturated ? + EDL?

8

[Cs]_{eq} (mol m⁻³)

Experimental and Modeling Approach for Cs Contaminated Soils

Soil Samples

Distribution and Relation between minerals and Cs

<u>Sorption and</u> <u>desorption</u> <u>mechanisms</u>

Clay-based model and prediction

- Mechanistic Understanding
- □ K_d setting / uncertainty
- Long-term transport
- Decontamination
- □ Safety of storage / disposal

Sorption mechanisms of Cs on Biotite (McKinley et al., 2004)

9

Cs sorption modeling for Hanford sediments (Liu et al., 2003)

Understanding of Effect of Organic Matter on Cs Sorption

10

Dependency of Organic Matter on Cs Sorption

Reversibility of Cs Sorption on Natural Materials

Fig. 2. Concentration of ¹³⁷Cs in among the fractions in the soil samples.

The Most Difficult Decontamination Work is for Forest

➤ Forest Covers about 70% of Fukushima Prefecture

The Limited Forest Decontamination is Likely Realistic under Consideration of Ecosystem Conservation and Disaster Prevention like Land Slides

➤After Decontamination Works,

Long-term Investigation of Cs Behavior from the Cs Source Term, the Non-decontaminatied Forest :

River-River Bed \Rightarrow Dam Reservoir \Rightarrow Estuary System Countermeasures to Prevent Cs Transport can be also Possible.

Overview of the Fukushima-TRACE Project

Objectives

- Elucidation of transport behavior of radionuclides (esp. radiocaesium; Cs) from contaminated forest to biosphere and sea.
- Development of dose evaluation system and methodology to constrain Cs transport.
- Construction comprehensive system for prediction and constraint of radionuclide transport.

Key phenomena in the Cs transport

Investigation & Simulation Area

Modelling of Transport by flowing water: 5 rivers in Hama-dori (Pacific coastal region)

Forests investigation

- Sakashita, Kawamata Town (deciduous broadleaf forest)
- Ogi, Kawauchi Village (ever-green needle-leaf forest)

Rivers & Estuaries investigation

- Ukedo & Takase Rivers (modelling of Cs transport in middle to downstream)
- NPP Violation Maeda Riv. Violation Tomioka & Ogi-no-sawa Rivers (integrated modelling from mountain forest to dam)
 - Odaka River (characterisation of soil particles & effects of salinity)
 - Kuma & Maeda Rivers (model confirmation from mountain forest to estuaries)

❑ Dam deposits investigation ✓Ogi Dam (Ogi-no-sawa River basin)

- ➢ Flowing from relatively high to low dose rate areas → easily detectable of Cs transport
- Small scale → less difficulty with the modelling & its validation

Dam deposits investigation: Sampling of bottom deposits and dam water

Water sampling (Heyroth sampling bottle)

Sampling of bottom deposits (Smith-Mcintyre Bottom sampler)

Core logging (undisturbed sampling)

Core logging (Gravity core sampler)

Dam deposits investigation: Depth distribution of radiocaesium in the bottom deposits

17

River investigation: Dose rate across the river

River investigation: Cs concentration along the river

19

Concentration of Cs in flood channel

- **Cs** concentration drastically **decreased** at the closest point to **estuary** in **Odaka River**.
- Coastal sandbar was NOT formed at estuary in Odaka River, but formed in other rivers.
- Salinity at the closest point to estuary was similar to seawater in Odaka River, but two orders of magnitude lower in Ukedo River (see next slide).
- → Cs was possibily desorbed from soil particles near estuary in Odaka River.

River investigation: Salinity of river water

Uke		20	
UKER-2	UKER-	stary	Sandbar
***	ANE OF		72
	E84	Service day	Da De

				V		
at low tide		unit: %	at low tide		unit: %	
	left bank	right bank		left bank	center	right bank
surface	0.3	0.3	surface	1.2	1.4	1.3
0.5m	2.0	2.1	0.5m	1.3	1.7	1.4
1m(0.7m)	1.9	1.9	1m(0.7m)	1.8	1.7	
at high tide unit: %		at high tide unit: %				
	left bank	right bank		left bank	center	right bank
surface	0.1	0.1	surface	2.3	2.1	2.0
0.5m	1.6	1.6	0.5m	2.4	2.5	2.3
1m	1.7	1.6	1m	2.3	2.5	

at low tide	at low tide		%	
	left bank	center	right bank	
surface	≦0.01	≦0.01	≦0.01	
0.5m	≦0.01	≦0.01	≦0.01	
1m	≦0.01	≦0.01	≦0.01	
at high tide		unit: %		
	left bank	center	right bank	
surface	≦0.01	≦0.01	≦0.01	
0.5m	≦0.01	≦0.01	≦0.01	
1m	≦0.01	≦0.01	≦0.01	

at low tide	unit: %			
	left bank	center	right bank	
surface	0.01	0.01	0.02	
0.5m	0.01	-	0.03	
1m	0.01	-	0.24	
1.5m	0.01	-	0.35	
2m	-	-	0.33	
at high tide unit: %				
	left bank	center	right bank	
surface	0.01	0.01	0.08	
0.5m	0.01	-	0.10	
1m	0.01	-	0.26	
1.5m(1.2m)	0.02	-	0.52	

Conclusion

> Understanding of Cs Behavior and Practical Ways for

- Decrease in Waste Generation
- Long-term Safety Assessment due to Cs Behavior from Un-decontaminated Forest

are Important.

Continuous / Practical R&Ds are Needed to Decrease Uncertainties in Fukushima.