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Monitoring Why MOde"ng?

Provides the current contamination level
Data accepted by the public

Does not predict future contamination levels, especially under significant

changes on climate, land, and water channel conditions
Provides calibration and validation data for modeling
Time consuming and expensive

Modeling

Predicts future contamination levels
e Under expected weather and other normal conditions
* Under hypothetical, especially extreme conditions, e.g.,
* Extreme storms/floods and drought conditions
* Accident conditions
Selects effective remediation actions
Public is skeptical to modeling
* Need to convince public on modeling
* Reproduce past monitoring results through model calibration and
validation
* Present model results in easily understandable forms (e.g., video)
Modelers need to understand phenomena they are trying to simulate
Modelers need to know what and how models predicts



Three-Dimensional Surface Water Contaminant Transport Code

FLESCOT code
*Time-varying, three-dimensional code to simulate
In water column

* Velocity and water depth affected by river flow, tide, wind, waves, water
temperature, and salinity

 Turbulent kinetic energy and its dissipation

* Water temperature

e Salinity

* Transport, deposition, and re-suspension of each of sand, silt and clay, separately

* Dissolved contaminant (radionuclides, pesticides, heavy metals, toxic
chemicals and aqueous chemical species) with interactions with sand, silt and
clay: (adsorption/desorption)

* Transport, deposition, and re-suspension of particulate contaminants adsorbed
by each of sand, silt and clay

Within bed of river, estuary, lake, sea, and ocean

* 3-d distributions of river, estuary, lake and sea bed elevation changes due to
sediment deposition and re-suspension (bed erosion)

* 3-d distributions of sand, silt and clay fractions within the bed

* 3-d distributions of contaminants each associated with sand, silt, clay within bed



One- and Two-Dimensional Surface Water Codes

TODAM and FETRA codes
e Time-varying, one-dimensional and two-dimensional codes to simulate
In water column:

* Velocity and water depth affected by river flow and tide; (TODAM only)

e Transport, deposition, and re-suspension of each of sand, silt and clay, separately

* Dissolved contaminant (radionuclides, pesticides, heavy metals, toxic
chemicals) with interactions with sand, silt and clay: (adsorption/desorption)

e Transport, deposition, and re-suspension of particulate contaminants adsorbed
by each of sand, silt and clay

Within the bed of river, estuary and sea:

« 2- and 3-d distributions of river, estuary, lake and sea bed elevation changes due
to sediment deposition and re-suspension (bed erosion)

» 2- and 3-d distributions of sand, silt and clay fractions within the bed

» 2- and 3-d distributions of contaminants each associated with sand, silt clay
within the bed



Examples of Surface Water Transport Modeling with These Codes
 Large Rivers

* Columbia River in WA (%Zn)

» Tennessee and Clinch Rivers, TN (137Cs)

* Pripyat and Dnieper Rivers in Ukraine for the Chernobyl Accident Assessment
(137Cs, 908, 238.239.240py 241 Am)

* Ob, Irtysh, Tobal, Iset and Techa Rivers in Russia (137Cs, ?0Sr, 238,239, 240py)

e Medium Rivers

* Ukedo River and its tributaries in Fukushima (137Cs)
e Cattaraugus, Buttermilk, and Frank Creeks in NY (137Cs, °Sr)
* Yazoo, Big Sunflower, Tallahatchie, and Coldwater Rivers in MS (pesticide,
Toxaphere)
e Small Rivers
« Mortandad and Los Alamos Canyons in NM (?*°Pu)
* Four Mile and Wolf Creeks in IA (pesticide, Alachlor)
* Monticello Stream Channels in MN (toxic chemical, Dioxin)
e Reservoirs and Lakes in Fukushima

* Kido Dam Reservoir (137Cs)
* Ogi Dam Reservoir (137Cs)
» Ogaki Dam Reservoir (137Cs)



Examples of Surface Water Transport Modeling with These Codes

» Coastal Water, Seas, and Oceans

* Pacific Coast of Japan (233 23°Pu, 1*7Cs)

e Irish Sea (137Cs)

 Kara Sea, Russia (137Cs, ?°Sr)

* 2,800-m deep Radionuclide Disposal Site in Atlantic Ocean
off NY (137Cs)

* Buzzard Bay and New Bedford Harbor in MA (PCB, heavy
metals)

e Strait of Juan De Fuca and Sequim Bay in WA (waste water)

* Beauport Sea, AK (temperature, salinity)

* 4000-m Deep Pacific Ocean (Disposed CO,)

 South Florida Offshore and Near-shore Waters in FL (spilled
oil)

» San Diego Bay in CA (heated water)

* Estuaries
« Hudson River Estuary in NY (137Cs)
 James River Estuary in VA (pesticide, Kepone)



Chernobyl Nuclear Plant and its New Safe Confinement
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Purpose: Assess the Dnieper River Contamination Level
Dnieper and Pripyat River Modeling with TODAM Code

"

PR The Dnieper River water affects 20 million Ukrainians:
Vi | * Drinking water

* Irrigation water

It 1s critical to evaluate the Dnieper River contamination
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Purpose: Evaluate 3’Cs Movement in the Ukedo and Takase Rivers
with TODAM Model:
The importance of high flows, sediment transport and the reservoir

Joint Study with JAEA
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Ogaki Dam Reservoir: Critically Important Water Resource

* The Ogaki Dam Reservoir
provides water to rice paddies
through numerous irrigation
canals and ditches

* Thus, it is very important to keep
reservoir water clean

* Some irrigation water returns to
other rivers (e.g., Odaka River)
that are not as contaminated as
the Ukedo River

* It is important not to spread
137Cs from the Ogaki Dam
Reservoir to areas not
contaminated as much.




Purpose:Closely Examine Ogaki Dam Reservoir with 3-D FLESCOT Code
Joint Study with JAEA

13 m above Bottom
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Purpose: Evaluate Cesium Movement in Ogi Dam Reservoir
Joint Study with JAEA
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Purpose: Assess Potential Risk of Plutonium Migration
Combined Biological and Physical Radionuclide Transport
Joint Study with LANL

Plant growth/uptake/death — Deposit radionuclides on soil surface in a

more easily erodible form — transported by wind and water

Los Alamos National Laboratory’s
Mortandad and South Mortandad Canyons Interactions of Biologica] and

Physical Mechanics
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Plutonium Transport, Deposition and Re-suspension in South
Mortandad Canyon with TODAM

» Almost all Pu is transported by sediment
* Clay contained the highest Pu concentration, then silt and sand

* Sand Consists of most of sediment in the stream
* Need to track movements of each sand, silt and clay to evaluate migration of Pu
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Purpose: Assess 13’Cs Spill to the Hudson River
Hudson River Modeling with 3-D FLESCOT Code

137Cs Kd value affected by salinity was measured in the river

N 10°¢
\ B
‘ I - 067
| 5 K, = 9084 [CI]
1 - r=0.95
}
{ U2 120 (rk :9{) n 105 -
N\ carsmu{.ﬂ"uosw / -
\
/ J
( =
\) ¢
(/ CmGsToN e
3
/ 104 L
k\ e e E
\ &0 45 |
] 4 CHELSEA l‘
S/ ey rs,‘;?a‘: i QJ-‘
// WEST mnm\k\ /
/ /1 /JBEAR HT, sulﬂu
(/ /:J$‘ﬂ$ f&#ﬁ'&glﬁiwﬂl““} 103 1aal 1 1 TR | 1 L M EEN | 1 L R EE] |
\ ’-’/ HAVERS FRAw wJ IND1AN POINT 1 0-2 101 1 00 10!
\ / TAPPAN 78X BRIDGE |}/ |NUCLEAR POWER PLANT )
(i/ (RK _fzﬁp.!;anv TOWN Cl (g/')

/
5. WASH?MGTGI Bmo&;f/vmxsns
RK }
Ly, 7 AN

/ [ oN H
RS i As 137Cs approaches New York City,

NEWARK MP D (3K 0 % 049 40 H 137 i
ﬁk’g’ J==——t"wm—mu desorption of '*'Cs desorption

~A occurs

19



37cs CONCENTRATION IN RIVER BED, pCi/g

FLESCOT Simulation of 13’Cs Migration
FLESCOT is Validated with the Data
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Purpose: Evaluate Potential Need for River Remediation
y 137Cs

Clinch and Tennessee River Contamination b
Releases from Oak Ridge Site over a Half Century

Legend

1000.0

100

Cs™ Released, Ci

0.1 -
1940 1950 1960 1€70 1980 1990 2000
Year

137Cs Release from Oak Ridge Site



The Clinch and Tennessee River Sedimentation Rates over Decades:
137Cs Prediction in these rivers

TODAM was Validation
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Main Aquatic Remediation Methods and Their Effectiveness

Intended
Water Body

Surface water
Surface water

Surface water

Surface water

Surface water

Surface water

Surface water
Groundwater

23

Radiation method Radionuclides Decontamination
Factor
Zeolite 1S4@sMS/Cs 1 ISTE 90% and greater
Prussian Blue 134Cs, 13/Cs 90% and greater
Lime %0Sr Variable up to over 90%
Suspended
Settling Pond and radionuclides in rivers Variable
Reservoir

Deposited radionuclides
Dredging in rivers and coastal Variable
water

All radionuclides in
Diversion waterways rivers 100%

All radionuclides in land

Block radionuclide surface,
influx to water or within the surface 100%
water

Do nothing — Natural attenuation

Disposal Need

Yes

Yes

Yes

No*

Yes

No*

Yes/No*
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Purpose: Reduce 90Sr Concentration Level in the Dnieper River
50% of %°Sr comes from Chernobyl Pripyat River Floodplain
Remediation Effectiveness Assessment With FETRA Code

Solutlon Block off Contamlnated Floodplain with a Dike

Wlthout the Newer East Bank lee

Old Dike

1 2
Kilometers

Flood Plain

Flood Plain

Cher

Old Dike

Dy
3_’*P ant No. 4
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/l
n

With the Newer East Bank lee

The dike construction actually

reduced aquatic pathway dose from

90Sr by 50% caused by flooding
FETRA was validated with data
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late Toxaphene {mg’kg)

Particu

Purpose: Determine if the pesticide should be banned in U.S.
Use of Models to Make this Decision

Solution: EPA decided to ban the pesticide with this modeling result
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Simula

on of Sediment an

Commercial Fishing was banned _
Pur?_ose: Where to dredge and its effectiveness to restore fish?
i

Pesticide Transport with 2-D FETRA Code

Sand, Cohesive Sediment, Orgasmic Matter under Tidal Flow with Net Freshwater River Discharge of 243m?/s

Tidally Varying Sediment Concentration at Slack Tide
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DISSOLVED KEPONE CONCENTRATION, pgit

BED SURFACE KEPONE CONCENTRATION (gig

Remediation Effectiveness due to Dredging (2-D FETRA Code)
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Purpose: Decide Where to Dredge and clean-up
effectiveness to restore fish and lobster

Remediation Assessment with 3-D FLESCOT Code
Dredging Bottom Sediment Contaminated by PCBs and Heavy Metal

Aquatic biota mainly take up contaminant through foods — Assessment of food web

New Bedford Harbor Buzzards Bay
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Suspended Sediment Concentration (mg/)

25

’L 24.2

I e O Predicted

@ Measured

10 — *

sl Suspended Sediment Concentrations
o

5T °

4}

@00 O@° _Q

P I T T T Y O T B

1 2 3 4 5 6 9 10 11 12 13 14 15 16 17

FLESCOT Application to New Bedford Harbor
PCB and Heavy Metal Contamination

11250m

New Bedford Harbor
and Buzzards Bay

7500m

a750m

® Battelle Ocean Sciences Slalions
W Woods Hele Qeeanggraphic
Institution Statiens

Hurricane

Clarks Point

MMMMMMM

Total Lead Concenteation (ngyl)

Sampling Station Number

-
Q
1Y

-
o
W

-
(=]
N

10

—

1.00 mvs

Flood Tide

¥

An'n;ﬂ ;‘:1;44 +
Ad &

- “#ﬁ@%f«« M

et I A S 24 4

¥ N4 danaadar>r T 5>
F N A Laraasihbn>T ¥Fr

Pl aamsnaababhbrr 7y

LY;-\I |‘l-l;:.>-1-)-»-,

tempest tx oct 1987 moc™ cct 1987

- QO Predicted

: I & Measured

E®  Contaminant Concentrations

©

R R

: 1 f Of ® f Of
! 1 I 1 1 1 [ 1 ! | I ! ] 1 i
1 2 3 4 5 6 = 10 11 12 13 14 15 16 17

Sampling Station Number




Remediation: Dredging Bottom Sediment in Lower Estuary
Prediction: PCB Concentrations after 10 years with and without dredging

PCB Concentrations after 10 years
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PCB Reduction in Winter Flounder in Lower Estuary with
Lower Estuary Dredging

0-, 2-, 5-year old Winter Flounder’s PCB Concentrations in Lower Estuary

* 65% more reduction without dredging
* USA FDA Action Limit: 11 pg/g
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Some Remediation of Cesium-Contaminated Soil

Technology Description Comment
Excavation Scrape upper soil layer and either Effective, but remove valuable topsoil
wash soil or dispose. unless replaced with new or washed
soil.
Isolation Engineered cover Isolates contaminated materials and
reduces exposure
Grouting Inject grout material to entrap the Isolates radionuclides, but restrict

radionuclides in a monolith

future land uses

In-situ leaching

Leach with acid or ion exchange
and a complexing agent, such as
citrate

Applicable to shallow soil.
Excess leachate must be collected.
Risk of uncontrolled mobilization.

Effectiveness depends on soil
characteristics

Physical and radiological soil
separation

Separate soils with high
concentrations from soils with low
concentrations

Mature technologies.

Effectiveness depends on soil
characteristics

Ex-situ soil washing

Extract cesium from solids by
washing with water or suitable
extraction solutions

Effectives depends on soil
characteristics




Removal and Disposal of Hanford Contaminated Soil




Soil Washing: Cesium Removal from Soil
G-N Kim et.al (2007)

Soil contaminated by TRIGA Reactor in Korea

Decontamination Efficiency(%)

Oxalic acid was the best to remove 137Cs and
%0Co from the test sand up to 85% of 1*7Cs
Water removed 10% of 137Cs from the sand
Oxalic acid barely removed 37Cs from silt
and clay

Fukushima silt and clay tightly adsorb '3’Cs
and water does not desorb 137Cs from
Fukushima soil
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137Cs Contaminated Soils & Sediments
A Potential Ex-Situ Remediation

Soil Washing — A Proven remediation
technology for radionuclides, heavy Contaminated Soil
metals & hydrocarbons
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i TPL: Target Performance Level

(PNNL Lixiviant: nontoxic, and biodegradable)



137Cs-contaminated Hanford Site Crib Soils
~ Hanford Dominant Clq}/ Mineral: Mlca-type
similar to Fukushima Soil to tightly Sorbs_ '*’Cs

Lixiviant Extraction Results
(Not-optimized)
2.00 — 0.25 mm Fraction Hanford Soil

Lixiviant Initial Final 137Cs
Formal 137Cs 137Cs activity
Conc Activity Activity Reduction
(Balkg) (Ba/kg) (%)
0.25 9.6E+03 2.7E+03 72
B 0.50 9.6E+03 = 2.1E+03 78
o 1.00 9.6E+03  1.6E+03 83
0.25 4.2E+03 1.5E+03 64
i - TICY 0.50  4.2E+03  1.0E+03 76
- "’:!!!:;,'g‘;;....c Extractions conducted at 96 °C for 6 hr

Q.‘}“a
3 PNNL Lixiviant: nontoxic, and biodegradable

It has a potential to be applicable to Fukushima




Modeling: Summa ry
* 1-d, 2-d, 3-d modeling have been used for

* Aquatic environmental assessments of nuclear accidents, and past nuclear
and industrial facility operations
* Decision making of aquatic environmental remediation
* Modelers need to understand the physical and chemical phenomena they are
trying to simulate
* Cohesive sediment transport 1s important to determine radionuclide
migration
e Modelers need to know what and how models predicts
e Itis critical to conduct model calibration and validation
* Conduct modeling to predicts future contamination levels for many conditions
including
e Normal conditions
* Not yet-occurred extreme weather conditions (e.g., severe storms and
drought)
* Remediation schemes before, during and after remediation
137Cs removal from Soil:
* Soil washing with carefully selected chemicals is feasible to remove 3’Cs
from soil, as Hanford Site has done
* Otherwise, excavation and capping of contaminated soil are commonly
implemented in U.S.



