Challenges for Fukushima environmental recovery - JAEA's perspective on radiocaesium distribution and behaviour in the environment

Kaname MIYAHARA

JAEA Fukushima Environmental Safety Center

July 10, 2015

International Symposium
The Society for Remediation of Radioactive Contamination

in Environment

Understanding off-site release

Understanding off-site release

Deposition due to the plume from the unit 1 can be distinguished by comparison of the ¹³⁴Cs/¹³⁷Cs activity ratios

Nagai *et al.* (2012)

Flat fields

(Within 80km radius from 1F except decontaminated areas)

80km radius

Development of a predictive model

- An empirical approach to allow prediction of the dose rate distribution based on statistically analysed results of the environmental monitoring data accumulated in the projects
- The time-dependent decrease of air dose rate in any specific setting can be approximated by a combination of two exponential functions, representing "fast" and "slow" reduction rates
- Analysis linked to geostatistical data shows that the environmental half-life clearly depends on land use

Estimation of individual dose

The current simple model approach

「Air dose rates measured by radiation monitoring (e.g. aerial survey) (μSv/h) 」 ×

[(people spend 8 hours a day outdoors and 16 hours a day indoors) × a shielding factor of 0.4 for indoors]

 \times 365days \div 1000 = Individual dose (mSv/y)

A flexible model approach tailored to specific lifestyles and locations (Takahara, 2013)

 $\Gamma_{Location-specific air dose rates (\mu Sv/h) \rfloor \times$

「Amounts of time spending indoors or outdoors depending on occupation」 × **「Dose reduction coefficient」**

× 365days ÷ 1000 × The ratio of personal dose rates to air dose rates _ = Individual dose (mSv/y)

Difference of lifestyle

- Amount of time spent indoors or outdoors depending on occupation
- Variations in does rates depending on the type and location of work

Dose reduction coefficient

- Shielding effect and filtering effect depending on construction type and time spent indoors
 - Differences in dose reduction depending on lifestyle and type of accommodation

Location-specific external exposure

- Distribution of radiocaesium deposition on the surface (ground, pavement etc.)
- Weathering effects

Takada (JAEA, 2014)

Radiocesium deposition in mountainous forests

-understanding a relationship between radiocesium deposition and topography -

Lighting pattern in the 3D surface map

Air dose rate (μ Sv h⁻¹)

- Radiocesium deposition is strongly affected by an east wind in this catchment (shadow effect)
- Proportional relationship between the air dose rate and elevation on the east-facing slope
- Aerosol interception by mountainous forests is greater for dry deposition than for wet deposition

More investigations on the distribution of air dose rates on a catchment scale are necessary under varying deposition conditions to understand the general relationship between air dose rate and topography (elevation/slope) for appropriate forest managements

Andoh et al. (2015)

The time-dependent decrease of air dose rates along a river system Aerial survey results along Ukedo river

Key transport behavior of radiocaesium (F-TRACE)

- Deposited Cs tends to bind strongly to soils, especially clays
- Annual discharge of radiocaesium from the topsoil of the mountainous forest by runoff erosion was estimated to be 0.1% of the total inventory in the topsoil
- Accumulation of radiocaesium in the river system was found on flood plain and in dam / lake sediments
- Limited amounts of fine particles such as clay could be discharged from dams to downstream rivers

Cs behavior in the environment;

- mountainous forest, dams / lakes, river system -

Aquatic ecosystems (1)

Guidelines

- Implement decontamination focused on the living environment of residents (riverbanks and ponds)
- For riverbanks utilized as parks or playgrounds, decontamination needs are assessed based on comparison of ambient doses with those in surrounding environment; if ambient doses significantly increase due to a heavy rain, the situation is reassesed
- For relevant ponds, when ambient doses significantly increase due to drying out, assessment of whether decontamination is needed or not
- Long-term planning based on a perspective of attenuation of radiation in aquatic ecosystems, continuous monitoring of radiation doses; this is supported by investigations of radio-Cs behavior in the environment
- Promote risk communication with residents and other stakeholders

Simulation of Sediment inflow due to a flood event (Deposition of sand, silt, and clay 120 hr after the event)

Aquatic ecosystems (2) Observed Cs concentration in

the sediment of dam lake

Sand

An example of water level management for dam lake to mitigate Cs transport to the downstream (Ogaki dam case)

Simulating Ogaki Dam Reservoir for two different water level conditions

Clay

Clay behavior in low & high water level

Radiocaesium accumulation in seafloor sediments (1)

Expected accumulation processes of radiocaesium in the coastal region

¹³⁷Cs sources to the environment

PBq (10¹⁵ Bq)

(offshore)

Radiocaesium accumulation in seafloor sediments (2)

Fisheries Agency of Japan (2014)

Otsaka (JAEA, 2013)

Overview of ¹³⁷Cs flux from each catchment of Ukedo River basin

Forest management strategy

- Zoning for selecting appropriate countermeasures against heterogeneously contaminated mountanous forests
- ➤ Efficient measurements of air dose rates in higher resolution using low altitude aerial survey
- Forecast when restriction on the use of forest products can be lifted

An image of zoning

Waste management challenges

Decision tree for volume reduction and reuse of soils and wastes

Publishing of Databases

- Distribution Map of Radiation Dose http://ramap.jaea.go.jp
- Database of Radioactive Materials Distribution

http://radioactivity.nsr.go.jp/ja/index.ht

<u>ml</u>

 User-friendly tools for data analysis and visualisation

http://emdb.jaea.go.jp/emdb/

Integrated decision support system for appropriate remediation and management options

