Cesium Environmental Radiochemistry:

Isotopic Signatures, Sediment Partitioning, & Environmental Cycling

Darin Snyder (INL) & Sue Clark (WSU) Second International Symposium on the Fukushima Accident June 7, 2013

Nobility Idaho National Laboratory

Acknowledgements

Jim Delmore (INL) – Oversight and mentorship

Nick Mann (INL) – Instrumental during sample preparation and chemical separation method development

Troy Tranter (INL) – Critical to the procedure development for chemical separation

John Olson (INL) – Led the thermal ionization mass spectrometer modifications and provided guidance during measurements

Mike Abbott (INL) – Provided valuable insight with respect to atmospheric transport and dispersal of fission products and access to key samples

Mathew Snow (WSU & INL) – Preparation and analysis of a variety of soil samples from containing Chernobyl debris as well as reprocessing contamination

We thank the U.S. Department of Energy NNSA and Office of Science for providing funding to support this work.

- 1. Cesium Isotopic Signatures
 - a) Discriminating between recent and legacy cesium
 - b) Elucidation of source
- 2. Cesium Cycling in Freshwater Systems
- 3. Summary, Observations, Recommendations

Outline

- **1. Cesium Isotopic Signatures**
 - a) Discriminating between recent and legacy cesium
 - **b)** Elucidation of source
- 2. Cesium Cycling in Freshwater Systems
- 3. Summary, Observations, Recommendations

Cs Signatures

WASHINGTON STATE

I INIVERSITY

Allow for the differentiation among possible origins of fission product Cs:

- Is it old or new bomb debris, or reprocessing of old or new fuel from a power reactor?
- Mass spectrometric analysis of Cs can provide information to aid in answering these signature questions.

Cesium Fission Yields

Ratio vs. Neutron Flux

Sources of Fission Product Cs

Potential sources of fission product Cs in the environment include: aged bomb debris, Chernobyl and Fukushima debris, effluents from an operating power reactor or reprocessing facility, and effluents from a recent detonation

aged bomb debris

Chernobyl or Fukushima debris

operating thermal reactor or reprocessing of fuel

effluents from a recent bomb test

niclearweanonsarchive o

[JNIVERSITY

Anticipated Cs Isotope Ratios WASHINGTON STATE

Global Fallout Record

INIVERSITY

- Estimated annual global yield for both atmospheric and underground nuclear tests
- 1963 fallout peak results from the spike in atmospheric yield in 1962

Atmospheric Fallout Samples

WASHINGTON STATE UNIVERSITY

Sediment samples for this work come were obtained from Sandhole Lake, ID and Lake Mead, NV.

Sandhole Lake is located ~850 km NNE of NNSS, whereas Lake Mead lies ~130 km SE of NNSS.

WASHINGTON STATE

NIVERSITY

Global Fallout Signature

Sandhole Lake, ID

- ¹³⁷Cs depth profile exhibits a classic global fallout distribution
- Calculated ²¹⁰Pb_{ex} age is consistent with the ¹³⁷Cs distribution
- Sample is an ideal candidate to evaluate the ¹³⁵Cs/¹³⁷Cs ratio chronometer

Global Fallout Signature

Sandhole Lake, ID

- A spring-fed lake, dominated by aeolian sedimentation
- The maximum ¹³⁷Cs activity (2.13 pCi/g at 10.5 cm depth) is assumed to represent the 1963 global fallout peak
- Global fallout of this age should have a ¹³⁵Cs/¹³⁷Cs ratio of ~2.7

Sandhole Lake Results

- The theoretical initial (1963) ¹³⁵Cs/¹³⁷Cs ratio of globally derived fallout is 1
- The measured ¹³⁵Cs/¹³⁷Cs ratio of the Sandhole Lake sample is 2.7 ± 0.5; this corresponds to an age-corrected, initial ¹³⁵Cs/¹³⁷Cs ratio of 1
- Consideration of the uncertainty of the measured ratio provides an age range of the fission product Cs of 35 – 51 y (1958 – 1974); (measured in 2009)
- Independent of the Cs results, USGS analysis of excess ²¹⁰Pb provides an age of 43 y for this sample

Idaho National Laboratory

Regional Fallout Signature

WASHINGTON STATE UNIVERSITY

Lake Mead lies approximately 130 km southeast of Frenchman Flat, NNSS.

Sediment samples from Lake Mead provide the opportunity to measure the ¹³⁵Cs/¹³⁷Cs ratio of locally derived fission product.

The USGS has made available lake core samples from previously conducted studies.

Lake Mead Samples

Van Metre et al. (2004)

- individual ¹³⁷Cs peaks were ascribed to individual test shots as well as the 1963 global fallout peak
- measurement of the ¹³⁵Cs/¹³⁷Cs ratios of these samples can be used to evaluate these ages

WASHINGTON STATE

Lake Mead Results

Our measured Cs ratios are inconsistent with the Van Metre et al. (2004) interpretation.

- the uppermost sample in the core does <u>not</u> represent global fallout
- the lowermost sample does not represent unfractionated, fission product from the Operation Knothole test series

Lake Mead Interpretation

Assuming an initial ¹³⁵Cs/¹³⁷Cs ratio of 1 for these samples, the measured Cs ratio suggests that the fission product (in BOTH samples) is only about 30 years old.

However....

The last above ground nuclear test at the NNSS was conducted in July of 1962, therefore there hasn't been a source of a significant quantity of fission product for more than 50 years. It's more likely that these samples consist of fractionated, mixed-age fission product Cs. Redistribution of contaminated soil by wind and surface water have strongly influenced the geographical distribution of Cs.

Isotopic Signatures Summary

- WASHINGTON STATE
- Demonstrated ability to measure ¹³⁵Cs/¹³⁷Cs ratios on environmental matrix at < 100 fg (< 10 pCi) ¹³⁷Cs level
- Developed a library of measured signatures \rightarrow fast vs. thermal fission
- Demonstrated ability to constrain the age of fission product Cs
- Lake Mead <u>and</u> power reactor samples suggest 135

 137 fractionation can occur and is measureable

- 1. Cesium Isotopic Signatures
 - a) Discriminating between recent and legacy cesium
 - b) Elucidation of source
- 2. Cesium Cycling in Freshwater Systems
- 3. Summary, Observations, Recommendations

WASHINGTON STATE

I INIVERSITY

Savannah River Site, USA

Located in the southeastern US

Warm, humid climate

Series of man-made ponds used as cooling system for reactors

Reactor operations ceased in 1980's; legacy fission product signatures remain

Pond B is a shallow, monomictic lake

Pond B Field Site

- Pond B was a part of the PAR Pond cooling system for the Savannah River defense materials production reactors.
- Pond B is a monomictic limnological system
 - -Thermal stratification in mid-February
 - -Lower anoxia develops about 30 days later
 - Thermally-driven system turnover in late October
- Water column and sediment samples collected seasonally

Seasonally Driven Stratification

Manahan, Stanley E., Environmental Chemistry, 6th edition, 1994.

Seasonally Driven Stratification

Manahan, Stanley E. Environmental Chemistry. Sixth Edition. 1994.

WASHINGTON STATE UNIVERSITY

WASHINGTON STATE UNIVERSITY

Onset of stratification Onset of anoxia

- The majority of the ¹³⁷Cs remains partitioned to the lake sediments.
- Measureable quantities of ¹³⁷Cs are available to cycle seasonally into the water column.
- The cycle is related to development of seasonal anoxia in the lower water column.
- Thermally-driven lake turnover results in seasonal distribution of ¹³⁷Cs to the upper water column.

- 1. Cesium Isotopic Signatures
 - a) Discriminating between recent and legacy cesium
 - b) Elucidation of source
- 2. Cesium Cycling in Freshwater Systems
- 3. Summary, Observations, Recommendations

Overall Summary

- Technical basis exists to discriminate between legacy fission product cesium and new inputs of cesium from the Fukushima accident.
- 2. Contaminant cesium released to the environment has high potential for partitioning to soils and sediments.
- 3. Cesium partitioned to soils and sediments may be seasonally bioavailable, depending on natural cycles of the local environment.

Recommendations

- Account for the redistribution of contaminated sediment (aeolian and/or fluvial) as this can be a critical process affecting remediation.
- 2. Develop a characterization plan that includes discrimination between recent and legacy fission product cesium.
- 3. Remediation plans must consider possible affects of seasonal influence on local geochemistry.
- 4. If fission product cesium is the primary contaminant of concern, soil treatments based on ion exchange should be considered.

Thank you for your time